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Abstract

The interaction integral is an accurate and robust scheme for evaluating mixed-mode stress intensity factors. This
paper extends the concept to orthotropic functionally graded materials and addresses fracture mechanics problems with
arbitrarily oriented straight and/or curved cracks. The gradation of orthotropic material properties are smooth func-
tions of spatial coordinates, which are integrated into the element stiffness matrix using the so-called “generalized
isoparametric formulation”. The types of orthotropic material gradation considered include exponential, radial, and
hyperbolic-tangent functions. Stress intensity factors for mode I and mixed-mode two-dimensional problems are
evaluated by means of the interaction integral and the finite element method. Extensive computational experiments
have been performed to validate the proposed formulation. The accuracy of numerical results is discussed by com-
parison with available analytical, semi-analytical, or numerical solutions.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are a new class of composites in which the volume fraction of
constituent materials vary smoothly, giving a nonuniform microstructure with continuously graded macro-
properties (Hirai, 1993; Paulino et al., 2002). These multifunctional materials were introduced to take
advantage of ideal behavior of its constituents, e.g. heat and corrosion resistance of ceramics together with
mechanical strength and toughness of metals. In practice, the nature of processing techniques of some
FGMs may lead to loss of isotropy. For example, graded materials processed by a plasma spray tech-
nique generally have a lamellar structure (Sampath et al., 1995) (see Fig. 1(a)), where flattened splats and
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Nomenclature

a half crack length

a;; contracted notation of the compliance tensor for plane stress; i,j =1,2,...,6
a;;-p a;; evaluated at the crack tip location; i,j =1,2,...,6

by contracted notation of the compliance tensor for plane strain; i,j =1,2,...,6

c11, €2, cpp coeflicients in the relationship between J and stress intensity factors (K; and Kjy)
Cii or C constitutive tensor for anisotropic materials; i,/,k,/ =1,2,3

d translation factor in the hyperbolic-tangent function
e natural logarithm base, e = 2.71828182. ..
E effective Young’s modulus in orthotropic materials; £ = \/E|Ex

E° effective Young’s modulus evaluated at the origin; E® = \/EY, EY,
Ey, E»; Young’s moduli with respect to the principal axes of orthotropy
EY,, EY, Young’s moduli Ey;, Es, evaluated at the origin

Gia shear modulus in orthotropic materials

Y, mode I energy release rate

Y1 mode II energy release rate

hy, h,  dimensions of the beam specimen

H length of material gradation

H contour integral

Im imaginary part of the complex function

J path-independent J-integral for the actual field

Jax J-integral for the auxiliary field

J* J-integral for the superimposed fields (actual and auxiliary)
J Jacobian matrix

J! inverse of the Jacobian matrix

K mode I stress intensity factor

K mode II stress intensity factor

K normalizing factor for stress intensity factors, Ky = aoEO\/ﬁ, E = E° /6
K| norm of stress intensity factors, |K| = /K? + K}

L length of a plate

M interaction integral (M-integral)

m;, n;  unit normal vectors on the contour of the domain integral
Do g coefficients of the asymptotic displacements for orthotropic materials; £ = 1,2

q weight function in the domain integral

r radial direction in polar coordinates

Re real part of the complex function

S or S compliance tensor for anisotropic materials; ,7,k,/ =1,2,3
u; displacements for the actual field; i = 1,2
u™ displacements for the auxiliary field; i = 1,2
w width of a plate

W strain energy density

#*™  strain energy density for the auxiliary field
X; local Cartesian coordinates; i = 1,2

X; global Cartesian coordinates; i = 1,2

Z complex variable, z; = x; +iy; k= 1,2
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o material nonhomogeneity parameter for gradation of E;
ol the real part of y; k=1,2
B material nonhomogeneity parameter for gradation of £,
B the imaginary part of u,; k =1,2
y material nonhomogeneity parameter for gradation of G|,
r contour for J and M integrals
Iy outer contour
I inner contour
r+ contour along the upper crack face
I~ contour along the lower crack face
o stiffness ratio, 6* = E11/E»n = via/va
0y Kronecker delta; i,j = 1,2
& contracted notation of ¢;; k=1,...,6
&) strains for the actual fields; i,j = 1,2,3
e strains for the auxiliary fields; i, j =1,2,3
angular direction in polar coordinates
Ko shear parameter, ko = £/(2Gpp) — v
W roots of the characteristic equation; £k = 1,2
,u,?p u; evaluated at the crack tip location; £ = 1,2
o complex conjugate of u,; k=1,2
v effective Poisson’s ratio, v = /vizva1
Vi Poisson’s ratio representing the response in direction j due to loading in direction i
o) contracted notation of 0;; k=1,...,6
ar stresses for the actual fields; i,j =1,2,3
o™ stresses for the auxiliary fields; i,j =1,2,3

Fig. 1. Cross-section microscopy of FGMs: (a) lamellar NiCrAlY-PSZ FGM processed by plasma spray technique (Sampath et al.,
1995); (b) columnar ZrO,-Y,0; thermal barrier coating with graded porosity processed by electron beam physical vapor deposition
(Kaysser and Ilschner, 1995).

relatively weak splat boundaries create an oriented material with higher stiffness and weak cleavage planes
parallel to the boundary. Furthermore, graded materials processed by the electron beam physical vapor
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deposition technique can have a columnar structure (Kaysser and Ilschner, 1995) (see Fig. 1(b)), which leads
to a higher stiffness in the thickness direction and weak fracture planes perpendicular to the boundary.
Thus, such materials would be orthotropic with preferential material directions that are perpendicular to
each other. Gu and Asaro (1997) studied orthotropic FGMs considering a four-point bending specimen
with varying Young’s modulus and varying Poisson’s ratio. Ozturk and Erdogan (1997, 1999) used integral
equations to investigate mode I and mixed-mode crack problems in an infinite nonhomogeneous ortho-
tropic medium with a crack aligned with one of the principal material directions considering constant
Poisson’s ratio. Kim and Paulino (2002c, 2003a) evaluated mixed-mode stress intensity factors (SIFs) for
cracks arbitrarily oriented in orthotropic FGMs using the modified crack closure (MCC) method and the
path-independent J;-integral, respectively.

The interaction integral method is an accurate and robust scheme for evaluating mixed-mode SIFs. Yau
et al. (1980) proposed the interaction integral method for evaluating SIFs in homogeneous isotropic ma-
terials. The method makes use of a conservation integral for two admissible states of an elastic solid: actual
and auxiliary. Wang et al. (1980) extended the method to homogeneous orthotropic materials. Yau (1979)
also used the method for bimaterial interface problems. Recently, the interaction integral method has been
used for evaluating SIFs in isotropic FGMs (Dolbow and Gosz, 2002; Rao and Rahman, 2002; Kim and
Paulino, 2003b,c). Dolbow and Gosz (2002) employed the extended finite element method; Rao and
Rahman (2002) used the element-free Galerkin (EFG) method; Kim and Paulino (2003b) used the finite
element method (FEM) to investigate FGMs with multiple cracks and material properties determined by
means of either continuum functions (e.g. exponentially graded materials) or micromechanics models; and
Kim and Paulino (2003c) have recently extended the method to evaluate the elastic 7-stress. In the
aforementioned papers (in this paragraph) the interaction integral method provided good accuracy for
SIFs, however, it was investigated for isotropic FGMs only. Thus the contribution of this work consists of
developing the interaction integral method for orthotropic FGMs.

This paper is organized as follows. Section 2 presents auxiliary fields appropriate for extracting SIFs
from the interaction integral (M-integral ') method. Section 3 explains the M-integral formulation for
orthotropic FGMs, its solution procedures and numerical aspects, and the relationships between M and
SIFs. Section 4 presents the features of the finite element implementation. Section 5 presents various ex-
amples, which test different aspects of the proposed formulation. Finally, Section 6 presents some con-
clusions and potential extensions of this work.

2. Auxiliary fields
The presentation below follows Lekhnitskii’s framework (Lekhnitskii, 1968). The generalized Hooke’s
law for stress—strain relationship is given by
& =a;0;, ay=a; (i,j=12,...,06), (1)
where the compliance coefficients, a;;, are contracted notations of the compliance tensor S;;; and
& =&, & =éxn, & =é&n, & =2y, & =2n, & =2,

(2)

01 =011, 02 =02, 03=033, O04=023, O05=013, 06=01.

! Here, the so-called M-integral should not be confused with the M-integral (conservation integral) of Knowles and Sternberg
(1972), Budiansky and Rice (1973), and Chang and Chien (2002). Also, see the book by Kanninen and Popelar (1985) for a review of
conservation integrals in fracture mechanics.
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For plane stress, the a;; components of interest are
a; (i,j=1,2,6) (3)
and for plane strain, the a;; components are exchanged with b;; as follows:

apida;s

(i,j=1,2,6). 4)

by = a;; —

Two dimensional anisotropic elasticity problems can be formulated in terms of the analytic functions,
¢ (z1), of the complex variable, z; = x; +1iy; (k= 1,2), i =+ —1, where
xe=x+oy, n=pFyk=12). (5)

The parameters o, and f, are the real and imaginary parts of y, = oy +1f,, which can be determined from
the following characteristic equation (Lekhnitskii, 1968)

all,u4 - 26116,“3 + (26112 + 6166)/12 — 2axu + ayn =0, (6)

where the roots p, are always complex or purely imaginary in conjugate pairs as u;, i; i, H-

2.1. Stress and displacement fields

Fig. 2 shows Cartesian and polar coordinate systems originating from a crack tip in an orthotropic
FGM. For evaluating mixed-mode SIFs in FGMs, we select the auxiliary stress and displacement fields as
the crack-tip asymptotic fields given by (see the paper by Sih et al. (1965) for the homogeneous case)

Fig. 2. Cartesian (x;,x,) and polar (r,0) coordinates originating from the crack tip in an orthotropic nonhomogeneous material
subjected to traction (t) and displacement boundary conditions.
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aux tip tip tip tip

an _ K Re My Hy Hy _ Hy

1 tip tip ; ip -
V2nr w' = ° \/cos 0+ 5P sin 0 \/cos 0+ 1, sin 0

aux ip\2 ip\2
L K™ re 1 (45) B (15"
ti ti . - )
V2mr |yt = " \/cos 0+ psPsin®  y/cos O+ P sin 0
aux __ Iaux Re 1 lutlip . :ulle
22 tip tip PR o
\2nr M~ M \/cosfH— 14" sin 0 \/COSH + 1P sin 0
(7)
KA 1 1 1
+ ; Re tip tip - ’
nr ) \/ cos 0 + 1P sin 0 \/ cos 0 + i sin 0
g _ K™ o |t ! ~ I
2 V2 tp _ tip ti ti
H \/cosﬂ—l—,upsmf) \/cos9—|—upsm9
Kaux 1 tip tip
+ \/H_Re tip tip a X - & -
2nr M T \/cos 0+ 1" sin 0 \/cos 0+ 15" sin 0
and
2r D -
ui™ Ka“"\/ —Re {ul o/ cos O + i sin 0 — P py 1/ cos O 4 i sin 0}]
aux 2r 1 tip : tip
+ K™ —Re| <5 (208 0 4 ;" sin 0 — pyy/cos O + p; " sin 6 o |,
T M =
5 (8)
us™ = K™ ;Re up { 1,1/ cos O + 1P sin 0 — 1iPgy 1/ cos O + uiF sin 0}]
aux 2r 1 lip . tip .
+ K™/ —Re | ———; { 421/ cos 0+ ;" sin @ — gy4/cos 0 + ;" sin 0 ¢ |,
T L )

respectively, where Re denotes the real part of the complex function, ,utlip and ,u;ip denote crack-tip material
parameters evaluated by using Eq. (6), which are taken for f, > 0 (k = 1,2), and p, and ¢, are given by

tlp( tlp) +aup tip tip

Pr = ay 12 7 ek
tip
tip | tip a22 tip (9)
G = aply + 5 — A
e

respectively. Notice that in the above expressions, the material parameters are sampled at the crack tip.
Moreover, the auxiliary stress fields in Eq. (7) are in equilibrium, i.e. ¢3¥ = 0 (no body forces or inertia
effects).
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2.2. Strain field—incompatibility formulation

The auxiliary strain field is chosen as
e = Sijkl(x)az;jxa (10)

ij
which differs from

g = (Sije)ipOht > (11)
where S;;,(x) is the compliance tensor of the actual FGM and (Sijk,)ﬁp is the compliance tensor at the crack
tip and, in general, Sju(x) # (Siu),, for x # 0 as shown in Fig. 3. Thus, the auxiliary strain field in Eq. (10)
is incompatible with the symmetric part of the auxiliary displacement gradient of Eq. (8), i.e.

€ £ (U 4 ut) /2. (12)

Although this incompatibility of the strain field vanishes as the contour shrinks to the crack tip, it gives
finite contributions for finite domains. Thus, it must be considered in the formulation, and cannot be
neglected.

2.3. Some remarks on alternative formulations

An alternative for the auxiliary fields is to use the auxiliary stress and displacement fields as given by Egs.
(7) and (8), respectively, and to evaluate the auxiliary strain fields by using the symmetric gradient of the
auxiliary displacement fields of Eq. (8). For this choice of the stress and strain fields, the stress—strain
relationship is given by
Z}m = (Cijkl)tipgz;m’ (13)
where (Cyu),;, is @ constant constitutive tensor evaluated at the crack tip. Thus the constitutive relation is
only satisfied at the crack tip location and, in general, it is not satisfied elsewhere, i.e. Cy(x) # (C,-,-k,)ﬁp.
Moreover, the auxiliary stress fields are in equilibrium and the auxiliary strain fields are compatible with the

g

Fig. 3. Illustration of the “incompatibility formulation” accounting for material nonhomogeneity. Notice that, in general, S(x) # Sy,
for x # 0. The area 4 denotes a representative region around the crack tip.
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auxiliary displacement fields. Dolbow and Gosz (2002) discussed this choice of auxiliary fields. Rao and
Rahman (2002) used these auxiliary fields (referred to as Method I in their paper) and implemented them
using the EFG numerical method.

Another alternative for the auxiliary fields is to choose the auxiliary strain fields by using the symmetric
gradient of the auxiliary displacement fields of Eq. (8), and to evaluate the auxiliary stress fields as follows:

o™ = Cija(x)eg" (14)
Notice that the auxiliary stress field is not in equilibrium, i.e. ¢3/¥ # 0 (no body forces). In this case, the
auxiliary strain field is compatible with the auxiliary displacement field & = (u}}* + uj“,‘") /2. This for-
mulation is the dual counterpart to the incompatibility formulation, and the nonequilibrium formulation is
given by Kim and Paulino (submitted for publication). This choice of the auxiliary fields has also been

discussed by Dolbow and Gosz (2002).

3. The interaction integral: M-integral

The interaction integral (M-integral) is derived from the path-independent J-integral (Rice, 1968) for two
admissible states of a cracked elastic orthotropic FGM. For the sake of numerical efficiency using a
domain-based method such as the FEM, the contour integral is transformed into an equivalent domain
integral (EDI) (Raju and Shivakumar, 1990). The theoretical formulation, the solution procedure, nu-
merical aspects, and the extraction of mixed-mode SIFs are provided below.

3.1. M-integral: incompatibility formulation
The standard J-integral (Rice, 1968) is given by

J = lim (Wél/ — O’,-,-u,-.l)n,-dr, (15)
r—o Jp. . ] .

s

where ¥ is the strain energy density expressed by

1 1
W = 30yt = EC[jkzﬁle»;j, 1)

and n; is the outward normal vector to the contour Iy, as shown in Fig. 4. Let us define the following
contour integral:

H = f(“//éljfa,]u,l)qudr, (17)
r
where I' =T, +I'" —I's+ 1T, m; is a unit outward normal vector to the corresponding contour (i.e.

m; =n; on I', and m; = —n; on I'5), and g is a weight function defined as a smoothly varying function from
g=1onTItoq=0on T, (see Fig. 5). Taking the limit Iy — 0, one obtains

lim # = lim WOy — oju; qdl’
s ) r0+r++r:r5( 1 O_]u-,l)qu
Fs=0 | Jrg+r 4= -r

To+IT+I" I

I's—0
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r
Ty 4

T/

\

E (X) ‘

E,(X)

Fig. 4. Conversion of the contour integral into an equivalent domain integral (EDI) where I' = I', + I'* — I'y+ I, m; = n; on I', and
m; = —n; on I.

Fig. 5. Plateau weight function (g-function).

Because ¢ = 0 on I', and the crack faces are assumed to be traction-free, Eq. (18) becomes

I's—0 I's—0 r

Applying the divergence theorem to Eq. (19), one obtains the following EDI
J = \/(Gijul}l — Wélj)qddA + /(O',-ju,-J — Wélj)yjqu (20)
A A

Using the derivative of strain energy density given by

o

Wy =—
! 6x1

1
= 0y&;j1 + zcijkl,laklgijy (21)
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one obtains

. 1
J = /(O'ijui,l - Wblj)q,jdz‘l +/ {Uij(uz:lj - gij,l) - E ijkl,li?klgij}qu~ (22)
A 4 \—

The underlined terms in Eq. (22) must vanish for the actual fields, but we retain them to extract the in-
compatible term for the auxiliary fields. For two admissible fields, which are taken as the actual (u, ¢, ) and
auxiliary (u***, &%, 6*"*) fields, the superimposed J-integral, J*, is given by

=T+ + M, (23)
where J is given by Eq. (22), J** is given by
aux aux aux aux aux aux aux 1 aux ,aux
JH = /A(Ji_j uyy — W d1/)q,dA4 +/A {Gz/ (”i,lj - 31‘;‘,1) _Ecijk1,13k1 i }qu, (24)

and M is the interaction integral (i.e. with the integrand given by terms involving products of the actual and
auxiliary fields) given by >

aux aux 1 aux aux
MZ/{(%’”M + oy uin) = 5 (Tueg” + o Stk)5lf}€1,fdA
A

+ /A {O'ij(”ilff — &) oy (i — &) — %Cijkl,l (e85 + g?/uxgkl)}q d4. (25)
After algebraic manipulations involving the following equalities
O—?/-uxui,lj = U;}lxgij,h (Tijg?,-ux = (T?;IXSU, Cijk].lg?,-uxgkl = Cijk/,lﬁijZ}lx7 (26)
one obtains
M= (Ml)local
= /A {(ijuilfx + o8 ui) — % (ouey™ + G?EXSik)%}‘IJdA + /A{Gij(uf-f‘ff —&yt) — Cymaeyey™ bq dA.
(27)

Notice that the incompatible term, underlined in Eq. (27), arises naturally in the M-integral formulation for
FGMs, but vanishes for homogeneous materials.

3.2. M-integral: numerical aspects

Due to the nature of the FEM, the M-integral is evaluated first in the global coordinates (Myioba) and
then transformed to the local coordinates (Mj,c.1). The global interaction integral (M,,) elobal 1s obtained as
(m=1,2)

1 0q
Mm = ij aux ax im) — A \Yi e i i 5’”' ~ d4
( )global /A {(O-Jul,m + oy ui, ) 2 (oue™ + o) j} oX;

+ [ {outat = ) = Cnmt” Jadt, (28)
| oty — )

2 Notice that the M-integral here is different from the conservation integral (also denoted by M) of Knowles and Sternberg (1972),
Budiansky and Rice (1973), Chang and Chien (2002), and Kanninen and Popelar (1985). In these references M =
/; (W6 — ajug)nix;ds (for two dimensional problems).
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P(X)

E,(X)
E..(X)

Fig. 6. Generalized isoparametric formulation (GIF) (Kim and Paulino, 2002a,b) using graded finite elements. The above figure
illustrates a graded Q8 element and P(X) denotes a generic material property, e.g. stiffness tensor components (C;;;) or compliance
tensor components (S;;;). The material properties at the Gauss points (Pgp) are interpolated from nodal material properties (7;)
by Pgp = > N;P; where N are element shape functions.

where (X}, X,) are global coordinates as illustrated by Fig. 4. The local M-integral (M) is calculated by
transformation as

MOC&] = (Ml )global COS 0 + (M2)globa1 Sil’l 0 (29)

In Eq. (28), special consideration should be taken for the derivatives of the constitutive tensor Cyj;,, and
the derivatives of the auxiliary strain field ", which is given by

ij,m

aux aux aux
& = Sikimyy + Sijki Ot - (30)

ij,m

A simple and accurate approach to evaluate Ciy;, (see Eq. (28)) and S;x.» (see Eq. (30)) is to use shape
function derivatives. The derivatives of the material quantity P = P(X) (e.g. Cj; and S;;;) are obtained as
(cf. Fig. 6):

0P _ N
X, & X,

B, (m:172)7 (31)

where n is the number of element nodes and N; = N;(&, ) are the shape functions which can be found in
many references, e.g. Cook et al. (2002). The derivatives ON,;/0X,, are obtained as

ON;/oX; | _ ,-1) ON;JO¢
{aM/axz} =1 {6N,~/6n ! (32)
where J~! is the inverse of the standard Jacobian matrix given by
_ | oX/a¢ aX,/0¢
I = {axl/an X, /on | (33)

Furthermore, the details on how to determine the auxiliary strain fields with respect to the global coor-
dinates are explained in Appendix A.

3.3. M-integral: extraction of stress intensity factors

For mixed-mode crack problems, the energy release rates %; and %y are related to mixed-mode SIFs as
follows:
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K . K. tip tip K,
% = —5-d Im 1 tp“iig o,
My My (34)
Ku i i ip ti
Gn =~ a7 Im[Kn (0 + ") + K (1" 15"),
where Im denotes the imaginary part of the complex function. Thus
Jiocal =Y = %1+ % = cuK{ + cnKiKn + enKy, (35)
where
tip tip tip
e = —21m % 7
2 Ky My
tip tip
_ ayp 1 a tip , ti 36
Cip = —71m<’utllpul21p> +71m(lu]p‘u2‘p), ( )
_ t11FI tip tip
2= " m(u" + 15").

For two admissible fields, which are the actual (u,¢,6) and auxiliary (#*"*, &%, 6*"*) fields, one obtains
(Wang et al., 1980)

T = €11 (K1 + K™)? + e (Ki + K™) (Ku + Ki™) + e (K + Ki™)* = Jioear + Jioens + Mioeat, — (37)
where Jioca is given by Eq. (35), JA%, is given by

T = en(Ki™)? + kiK™ + en (Kii™)* (38)
and M., 1s given by

Miocal = 2en KiKE™ + e (KK + K™ Kn) + 2enKuKi™. (39)
The mode I and mode II SIFs are evaluated by solving the following linear algebraic equations:

All(olc)al = 2C]1KI + CIZKH (Klaux = 107 KIaqu = 00), (40)

]‘41(02(:)a1 = ClzKI + 26’22KH (Klaux = 0.0,Kﬁux = 10) (41)

The relationships of Egs. (40) and (41) are the same as those for homogeneous orthotropic materials (Wang
et al., 1980) except that, for FGMs, the material properties are evaluated at the crack-tip location. Notice
that there is no need for Newton’s iteration, which is needed with other approaches such as the path-
independent J;-integral (Kim and Paulino, 2003a) and the MCC (Kim and Paulino, 2002c). Here the SIFs
for mode I and mode II are decoupled (cf. Egs. (40) and (41)).

4. FEM implementation

The FEM code I-FRANC2D (Illinois-FRANC2D) has been used for implementation of the present
interaction integral formulation, and for obtaining all the numerical results presented in this paper.
I-FRANC2D is based on the FRANC2D (FRacture ANalysis Code 2D) (Wawrzynek, 1987; Wawrzynek
and Ingraffea, 1991), which was originally developed at Cornell University. The extended capabilities of
I-FRANC2D include graded elements (see Fig. 6) to discretize nonhomogeneous materials, and fracture
parameters such as mixed-mode SIFs and T-stress. The -FRANC2D material library contains continuum
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functions (e.g. exponential, linear, hyperbolic-tangent, and radial functions) and micromechanics models
(e.g. self-consistent, Mori-Tanaka, and three-phase model).

The graded elements are based on the ‘“‘generalized isoparametric formulation” or GIF (Kim and
Paulino, 2002a,b) and, in general, they show superior performance to conventional homogeneous elements
(element-wise constant material property) (Kim and Paulino, 2002b). Using graded elements, the
I-FRANC2D FEM code can evaluate SIFs for both isotropic and orthotropic FGMs by using the inter-
action integral. The code also has other numerical schemes especially tailored for FGMs (Kim and Paulino,
2002a) such as the path-independent J;-integral, the MCC, and the displacement correlation technique
(DCT) for both isotropic and orthotropic FGMs (Kim and Paulino, 2002a,c, 2003a). Based on numerical
investigations, Kim and Paulino (2003b,c) observed that the interaction integral scheme provides good
accuracy in comparison with the above-mentioned schemes for isotropic FGMs. This paper shows that this
is also the case for orthotropic FGMs.

5. Examples

The performance of the interaction integral for evaluating SIFs in orthotropic FGMs is examined by
means of numerical examples. In order to assess the various features of the method, the following examples
are presented:

(1) Plate with a crack parallel to the material gradation.

(2) Plate with a crack perpendicular to the material gradation.
(3) Four-point bending specimen.

(4) Disk with an inclined center crack.

(5) Plate with a curved crack.

(6) Strip with an edge crack.

Isoparametric graded elements are used to discretize the geometry of all the above examples. Singular
quarter-point six-node triangles (T6qp) are used for crack-tip elements, eight-node serendipity elements
(Q8) are used for a circular region around crack-tip elements and over most of the mesh, and regular six-
node triangles (T6) are used in the transition zone between regions of Q8 elements.

All the examples report SIFs or energy release rates obtained by means of the interaction integral in
conjunction with the FEM. The first and second examples are presented as a means to validate the im-
plementation against the semi-analytical solutions by Ozturk and Erdogan (1997, 1999). The third example
is also presented as a validation of the implementation against the solutions reported by Gu and Asaro
(1997). The fourth example investigates an inclined center crack in a circular disk with material gradation
both in radial and Cartesian directions. The fifth example investigates a semi-circular crack. Finally, the last
example investigates an edge crack in hyperbolic tangent materials considering various translations of
material properties.

The first two examples employ the following averaged material parameters: the effective Young’s
modulus E, the effective Poisson’s ratio v, the stiffness ratio 8" and the shear parameter «,. They replace the
independent engineering constants E;, G;; and v;; ((vi;/Es) = (vi/E;;)) (i,j = 1,2), i.e. (Krenk, 1979)

Ell_& E

E=VE\Ey», Vv=/viava, F="r=" K= -
Ey vy 2Gp»

v (42)

)

for plane stress. The bounds on Poisson’s ratios vy, and v,; for plane orthotropy are given by (Christensen,
1979):
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via| < (En/Ezz)l/Z, [var] < (Ezz/E11)1/27 (43)

respectively. Therefore the bound on the effective Poisson’s ratio * is v < 1.0. The first two examples also
consider proportional material nonhomogeneity, i.e.

: 1 [E“(H)} : log [EZZ(H)} : log [GH(H)} (44)

P=am 18 | gy | = 20 18 | En(omy | ~ 20 1°8 | G-

where H is the length of material gradation considered, e.g. H = W for the first example and H = L for the
second example. The nonhomogeneity parameter § has units [length]fl.

5.1. Plate with a crack parallel to material gradation

Fig. 7(a)-(d) show a center crack of length 2a located in a finite two-dimensional plate under fixed grip
loading or constant traction, the complete finite element mesh, a mesh detail with 16 sectors (S16) and four
rings (R4) around crack tips, and a zoom of the right crack tip region, respectively. For fixed-grip loading,
the applied load results in uniform strain & (X;,X;) = ¢ for a corresponding uncracked plate; and for
constant traction, the applied load o, (X;, £L) = £1.0 along the top and bottom edges. The displacement
boundary conditions are prescribed such that u; = u, = 0 for the center node on the left edge, and u, =0
for the center node on the right edge.

The variations of Ey;, E, and Gy, are assumed to be an exponential function of X; and proportional to
one another, while the Poisson’s ratio vy is constant. The mesh has 1666 Q8, 303 T6, and 32 T6qp crack-tip
singular elements with a total of 2001 elements and 5851 nodes (see Fig. 7(b)). The following data were used
for the FEM analysis:

a/W=0.1, L/W=10, ¢&=10, pa=0.5,
En(X) = ENe™, En(X) = Ene’™,  Gu(X) = Glhe™,
ko = 0.5, v=(0.1,0.2,0.3,0.4,0.5,0.7,0.9),

plane stress, 2 x 2 Gauss quadrature.

(45)

Table 1 shows the effect of material nonhomogeneity on normalized mode I SIF for the nonhomo-
geneous orthotropic plate of Fig. 7 under fixed grip loading considering v = 0.3 and xy = 0.5. The FEM
results obtained by the interaction integral agree very well with those obtained by the MCC (Kim and
Paulino, 2002c). As the dimensionless nonhomogeneity parameter fa increases, the mode I SIF at the right
crack tip increases, but the mode I SIF at the left crack tip decreases. This is expected due to the nature of
the exponential material gradation with the origin of the Cartesian coordinate system at the center of the
plate. Table 2 shows the effect of the Poisson’s ratio v on mode I SIF for the nonhomogeneous orthotropic
plate of Fig. 7 under fixed grip loading considering fa = 0.5 and x, = 0.5. The FEM results obtained by
means of the M-integral agree with the SIFs obtained by Ozturk and Erdogan (1997) to within 1%. The
effective Poisson’s ratio v = /v, has a negligible effect on the SIFs for a mode I crack problem. With
respect to the M-integral, notice that the results of Table 1 considering fa = 0.5 coincide with those of
Table 2 for v = 0.3. These results are presented in bold at these Tables. In order to assess the accuracy of the
present interaction integral method (M-integral), Table 3 shows normalized SIFs computed by other
methods, such as J;-integral, the MCC, and the DCT. By comparing Tables 2 and 3, and adopting Ozturk
and Erdogan’s (1997) semi-analytical solution as reference, the interaction integral provides the best
accuracy with respect to the aforementioned schemes.

3 Notice that the effective Poisson’s ratio v (see Eq. (42)) can be bigger than 0.5 for orthotropic materials.
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Fig. 7. Example 1: plate with a center crack parallel to the material gradation: (a) geometry and BCs considering either fixed-grip
loading (4) or far-field traction (o) on the (far-field) horizontal edges; (b) complete finite element mesh; (c) mesh detail using 16 sectors
(S16) and 4 rings (R4) around crack tips; (d) zoom of the right crack tip.

Table 1

Example 1: the effect of material no_r(l)homog;coneity on normalized mode I SIF in a nonhomogeneous orthotropic plate under fixed grip
loading (v = 0.3, ko = 0.5, Ky = &E /7a; E = E°/8*; E° = \/E%,EY,) (see Fig. 7)

Ba M-integral (present) MCC
K1(+a)/K0 KI(—LI)/KQ K[(‘HI)/K() KI(—LI)/KQ

0.00 0.9969 0.9969 0.9986 0.9986
0.10 1.0750 0.9247 1.0791 0.9251
0.25 1.2043 0.8245 1.2101 0.8233
0.50 1.4371 0.6706 1.4484 0.6680
0.75 1.7055 0.5404 1.7255 0.5358
1.00 2.0318 0.4335 2.0639 0.4285
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Table 2

Example 1: normalized mode I SIF in a nonhomogeneous orthotropic plate under fixed grip loading for various effective Poisson’s
ratios v = \/viava; (Ba = 0.5, kg = 0.5, Ky = eE /ma E = E°/&%; E° = \/E9,ES,) (see Fig. 7)

v

M-integral (present)

Ozturk and Erdogan (1997)

K1(+a)/K0 K[(fa)/Ko K1(+a)/KO K[(*[l)/KO
0.1 1.4300 0.6668 1.4183 0.6647
0.2 1.4334 0.6685 1.4233 0.6676
0.3 1.4371 0.6706 1.4280 0.6704
0.4 1.4405 0.6731 1.4325 0.6730
0.5 1.4438 0.6751 1.4368 0.6755
0.7 1.4505 0.6785 1.4449 0.6802
0.9 1.4563 0.6827 1.4524 0.6846
Table 3

Example 1: comparison of normalized mode I SIF in a nonhomogeneous orthotropic plate under fixed grip loading for various effective
Poisson’s ratios (fa = 0.5, k = 0.5, Ky = eE /7@, E. = E°/&%; E° = \/E9,EY,) (see Fig. 7). The J;-integral results were reported by
Kim and Paulino (2003a) (cf. Tables 2 and 3)

v J-integral MCC DCT
K1(+a)/Kg K](—a)/K() K|(+a)/K0 K](-d)/K() K](+a)/K0 KI(—G)/KO
0.1 1.4451 0.6776 1.4405 0.6630 1.4363 0.6764
0.2 1.4488 0.6802 1.4442 0.6655 1.4405 0.6789
0.3 1.4522 0.6822 1.4480 0.6676 1.4446 0.6814
0.4 1.4559 0.6843 1.4517 0.6697 1.4484 0.6839
0.5 1.4593 0.6864 1.4551 0.6718 1.4517 0.6864
0.7 1.4655 0.6902 1.4618 0.6760 1.4576 0.6902
0.9 1.4718 0.6939 1.4684 0.6802 1.4588 0.6923
25
201
o _0_-05
|;<| 15 E=E"e
’?_—\ E:Eoe(X1/2a)
%, 10f o ~—~
=] - =
“7 E=g° ™
oL ‘ ‘ ‘
1 0.5 0 0.5 1
Xlla

Fig. 8. Example 1: COD in orthotropic FGMs under far-field constant traction considering o = 0.5, v = 0.3, and fla = 0.5. The COD
for the crack in the FGM is indicated by a thicker line.

The crack opening displacements (CODs) are evaluated for both homogeneous and nonhomogeneous
medium considering either fixed-grip loading or far-field constant traction, as shown in Fig. 7(a). Fig. 8
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shows the COD in a nonhomogeneous medium (fa = 0.5) under far-field constant traction with
E=E(X,) = E%"/% (E° = \/EY,EY,) and also in homogeneous materials with £(—a) = E% %3, E(0) = E°,
and E(a) = E%"°. The COD for the right crack tip (X; = a) in the nonhomogeneous medium is greater than
that in the corresponding homogeneous medium with E(a) = E£%°3. Thus the mode I SIF K; in the non-
homogeneous medium is greater than that in the homogeneous medium. Similarly, the mode I SIF (Kj) at
the left crack tip (X; = —a) in the nonhomogeneous medium is lower than that in the corresponding
homogeneous medium with E(—a) = E% %3, The COD for E = E° serves as a reference curve between
those curves for E = E%"° and E = E%¢ %3,

Fig. 9 shows the COD in a nonhomogeneous medium under fixed-grip loading with £ = E(X,) = E%%/?
and also in homogeneous materials with E(—a) = E%¢ %, E(0) = E°, and E(a) = E%">. Notice that, for the
fixed-grip loading, the COD does not depend on material properties in the homogeneous medium. In
Eq. (8), the mode SIF Kj for a homogeneous medium under pure mode I loading is given by (0 = 180°):

S S —

where g, = anpy + an/w — ax (k=1,2). The material properties for the three homogeneous materials
considered are proportional to one another. In this case, the roots p, (k= 1,2) of the characteristic
equation (6) are identical. Moreover, for the case where the Cartesian coordinate system coincide with the
principal directions of material orthotropy,

a —1 a —o a 0
11 = 9 12 = ) 16 = V.
Ep Ey

Thus, with the same crack surface displacement u, and Poisson’s ratio vi,, the mode I SIF Kj is proportional
to Ey, as illustrated by Table 4. By comparison of the solution of a nonhomogeneous medium with that of
a homogeneous medium having the material properties at the right crack tip (X; = a), the COD in the
nonhomogeneous medium is smaller than that in the corresponding homogeneous medium with E(a) =
E%%3, and thus the SIF (K;) in the nonhomogeneous medium is lower than that for the corresponding

1.5
1 i 7
? (" E=p0a(X,/22) .
g E—p0=E0a0-5_£0g05
N
S

1A

0.5r
b

Fig. 9. Example 1: COD u, in orthotropic FGMs under fixed-grip loading considering ko = 0.5, v = 0.3, and fa = 0.5. The COD for
the crack in the FGM is indicated by a thicker line.
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Table 4

Example 1: homogeneous orthotropic material with properties sampled at the crack tips (X; = +1.0) and at the mid-point of the crack
(X1 = 0) in the corresponding FGM (see Eq. (45)). For all the cases, ko = 0.5, Ky = tE e E = E° /8% E° = \/EV,EY,. Also, notice
that E = E%#1. The superscript in K] indicates case 1

Parameter Case
1 2 3
Ey e EY Eyef
K]/K() KII/K() K[Ieﬁ/K() Kfezﬁ/Ko
K1 /Ky (numerical) 0.6046 0.9969 1.6436
homogeneous medium. Similarly, the mode I SIF (Kj) at the left crack tip (X; = —a) in the nonhomo-

geneous medium is greater than that in the corresponding homogeneous medium with E(—a) =
EOC_O‘S.

5.2. Plate with a crack perpendicular to material gradation

Fig. 10(a) and (b) show a crack of length 2a located in a finite two-dimensional plate under remote
uniform tension loading for two different boundary conditions. These boundary conditions are prescribed
such that, for Fig. 10(a), u; = 0 along the left and right edges, and u, = 0 for the node in the middle of left
edge; while for Fig. 10(b), u; = 0 for the left corner node of the bottom edge and u, = 0 along the bottom
edge. The finite element mesh configurations are the same as in the previous example (see Fig. 7(b) and (c)).
The applied load corresponds to o2 (X;, L) = ¢ = £1.0 for the BC in Fig. 10(a) and 6 (X1,L) =0 =1.0
for the BC in Fig. 10(b).

The variations of E|;, E», and Gy, are exponential functions of X; and are proportional to one another,
while the Poisson’s ratio v, is constant. The following data were used for the FEM analysis:

(a) o=1 (b) c=1

2
0 ; % )
E11(X2)=E1 eﬁxz E11(x2)=E't eﬁxz
O E, (X)=E, ™ C E, (%)=E, ™
G _ 0 epx, = _ 0 L BX,
O 12 (XE)_Gm - O G12 (XZ)_G12 e
¢ $ \l{ ¢ ¢ QO ) () ) €
o=1

Fig. 10. Example 2: plate with a center crack perpendicular to the material gradation: (a) first set of BCs; (b) second set of BCs.
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a/W=0.1, L/W=1.
Ell(XZ) = E(l)leﬁXz,

0,

Exn(X) = B,

dimensionless nonhomogeneity parameter : fa = (0.0-0.5),

0* = Ey/Ey» = (0.25,0.5,1.0,3.0,10.0),
Ko = (—0.25,0.0,0.5,1.0,2.0,5.0),

plane stress, 2 x 2 Gauss quadrature.
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Fig. 11. Example 2: contours used to evaluate the J-integral: (a) contours 1, 2, 3, and 4; (b) contours 5, 6, and 7.
Glz(Xz) = G(l)zeﬁXZ,
v =0.30,
=10, ko = 5.0,

Fig. 11(a) and (b) show seven contours used for evaluating the J-integral considering &*
v=0.3, and fa =0.5. Figs. 12 and 13 show the effect of the incompatible term (see Eq. (27)) on the
convergence of the J-integral obtained from Eq. (35) considering the two sets of BCs, respectively. Notice

Jx 108

3.6

3.58

3.561

3.541

3.521

considering incompatible term
neglecting incompatible term

converged
solution

3.5
1

3 4 5 6
Number of Contours

Fig. 12. Example 2: effect of the “incompatible term” on the path-independence of the J-integral considering the first set of BCs. The
region associated with each contour is illustrated by Fig. 11.
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Fig. 13. Example 2: effect of the “‘incompatible term” on the path-independence of the J-integral considering the second set of BCs. The
region associated with each contour is illustrated by Fig. 11.
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Fig. 14. Example 2: normalized strain energy release rate versus the nonhomogeneity parameter fla and the shear parameter
considering uniformly applied tension (2,(X;,+L) = +o for the first set of BCs, and g2 (X;,L) = ¢ for the second set of BCs) and
5 =10.0,v=03,%, = no*a/E". The dashed lines indicate the results reported by Ozturk and Erdogan (1999), and the dash-dotted
lines indicate the results obtained by means of the MCC method. The solid lines indicate the results by means of the present M-integral
considering the two BCs, and the two bullets at fa = 0.5 indicate the converged solutions for J considering k, = 5.0 as shown in Figs.
12 and 13, respectively.

that J is obtained after evaluation of SIFs (see Eq. (35)). As the contours become larger, the solution
converges when the incompatible term is considered, however, it diverges if such term is neglected. Fig. 14
shows strain energy release rates ¥/%, in a nonhomogeneous orthotropic plate under uniform tension for
two different boundary conditions for a fixed stiffness ratio 6* = 10 and constant Poisson’s ratio v = 0.3
with varying material nonhomogeneity ffa and . This figure clearly indicates that the boundary conditions
have a significant influence in strain energy release rates (and SIFs). For the first set of BCs (see Fig. 10(a)),
the FEM results agree with the strain energy release rates (4/%,) obtained by Ozturk and Erdogan (1999).
The strain energy release rates %/%, monotonically increase with xy and ffa. However, for the second set of
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(d)

Fig. 15. Example 3: four-point bending specimen: (a) geometry and BCs; (b) complete finite element mesh; (c) mesh detail using 12
sectors (S12) and four rings (R4) around crack tips; (d) zoom of the right crack tip.

BCs (see Fig. 10(b)), the present results agree with the strain energy release rates (4/%,) obtained by the
MCC, and the FEM results are significantly different from those for the previous BCs. Notice that the two
bullets along the line fa = 0.5 indicate energy release rates which are the converged solutions for J as
shown in Figs. 12 and 13. The FEM results for various 0* and x, obtained by the interaction integral
compare well to those obtained by the path-independent J;-integral (Kim and Paulino, 2003a), which are
not presented in this paper. Further numerical results investigating the effect of boundary conditions,
Poisson’s ratio, and plate size on the strain energy release rates considering the two BCs of Fig. 10 can be
found in the papers by Kim and Paulino (2002c, 2003a).



3988 J.-H. Kim, G.H. Paulino | International Journal of Solids and Structures 40 (2003) 3967-4001

5.3. Four-point bending specimen

Gu and Asaro (1997) investigated the effect of material orthotropy on mixed-mode SIFs in FGMs
considering a four-point bending specimen with exponentially varying Young’s moduli, shear modulus, and
Poisson’s ratio. Fig. 15(a) shows the four-point bending specimen geometry and BCs, Fig. 15(b) shows the
complete FEM mesh configuration, Fig. 15(c) shows a mesh detail around the crack, and Fig. 15(d) shows a
zoom of the right crack tip. The point loads of magnitude P are applied at the nodes (X;,X5) = (%11, 1.0).
The displacement boundary conditions are prescribed such that (u;,u;) = (0,0) for the node at
(X;,X2) = (—10,—1.0) and u, = 0 for the node at (X;,X5) = (10, —1.0). Young’s moduli, shear modulus,
and Poisson’s ratios are exponential functions of X, given by

En(X) = B\ e, En(Xs) = Epel™;
via(X2) = v (1 + eXa)e, vy (Xa) =1, (1 4 eXy)e; (47)
G(X2) = En(Xo)/R(VA+ (X)) 2= En()/En(X2);

respectively. Notice that A =1/ 8* (see Eq. (42)). The mesh discretization consists of 625 Q8, 203 T6, and 24
T6qp elements, with a total of 852 elements and 2319 nodes. The following data were used for the FEM
analysis:

plane stress, 2 x 2 Gauss quadrature,

(48)
a=30, n/h=10, ¢e=-09, P=1.0.

Figs. 16 and 17 show comparison of the SIF |K|h?/2/PZ with |K| = \/K? + K3, and the phase angle
W = tan~!(Ky /K;), respectively, obtained by the interaction integral method with those reported by Gu and
Asaro (1997). There is quite good agreement between the two solutions, although Gu and Asaro (1997) did
not provide geometry information. Notice that as 4, increases, both the SIF and the phase angle y in-
crease, and the material orthotropy (measured by A = E»,/E};) shows significant influence on the results.
Moreover, for a fixed ph;, as A increases the SIF increases, however, the phase angle decreases.

8 >
Gu and Asaro (1997)  ---- =
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6f A=10 =
5 5 e Py
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3»
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1»
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0 0.4 0.8 1.2 1.6 2 2.4
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Fig. 16. Example 3: the normalized norm of mixed-mode SIFs |K \h‘;/ 2

)v = EZZ/EII'

/Pl for a four-point bending specimen. The parameter
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Fig. 17. Example 3: the phase angle i/ = tan™!(K;/Ky;) for a four-point bending specimen. The parameter A = Ex/Ej;.

+ P=100
&
£ Q
o™ o Pil
N * P=100
(a) (b)
(c) (d)

Fig. 18. Example 4: a circular disk; (a) geometry and BCs for an inclined center crack; (b) the complete mesh configuration; (c) mesh
detail displaying 12 sectors (S12) and four rings (R4) around the crack tips; (d) zoom of the right crack tip.
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5.4. Disk with an inclined center crack

Fig. 18(a) shows a circular disk with a center crack inclined by 0 = 30°, Fig. 18(b) shows the complete
mesh configuration, Fig. 18(c) shows the mesh detail around the crack, and Fig. 18(d) shows a zoom of the
right crack tip. A point load is applied to the top and bottom nodes, i.e. P(0,£10) = £100. The dis-
placement boundary conditions are prescribed such that (u;,u;) = (0, 0) for the node at (X;,X;) = (—10,0)
and u, = 0 for the node at (X;,X;) = (10,0). Three different exponential material gradations with respect to
the radial (r) and Cartesian directions (X;) and (X,) are considered as given below:

E]](I") = E(l)le‘”, Ezz(}”) = Egzeﬁ’, Glz(}") = G(l)ze”; r = \/Xlz +X22,
En(X) = E(l)le“‘Xl‘7 Exn(X)) = E(Z]zemX”’ Gp(X)) = G‘l)zeﬂXll’ (49)
E“(Xz) = E?le“‘XZ‘, E22(X2) = Egzeﬁ‘)@', Glg(Xz) = G?ze”)@'.

The mesh discretization consists of 747 Q8, 228 T6, and 24 T6qp elements, with a total of 999 elements and
2712 nodes. The following data were used for the FEM analysis:

plane stress, 2 x 2 Gauss quadrature,
a/R=0.1,

Isotropic case:
E=10, v=023,

Orthotropic case:
EY =01, E,=10, G),=05 v;=0.03,
EY =10, E,=10, G),=05 v;=0.03.

Table 5 shows the FEM results for SIFs for the isotropic and orthotropic cases considering various
material nonhomogeneity parameters fa for an inclined center crack in a circular disk with radial gradation
and proportional material variation (xa = fa = ya). It also compares the present results with those ob-
tained using the MCC (Kim and Paulino, 2002c) and shows good agreement between the two methods.
Notice that, as the nonhomogeneity parameter fa increases, the SIFs decrease for both isotropic and or-
thotropic cases. Fig. 19 shows the crack opening profile representing high mode-mixity for the orthotropic
FGM case considering the radial gradation and proportional material variation (ea = fa = ya = 0.5). To
illustrate the effect of radial gradation on a single property (nonproportional material variation), Table 6
shows the FEM results for SIFs considering three different variations: E;; (Cases 1 and 4: aa = 0.1,
pa =7ya=0.0), E; (Cases 2 and 5: fa=0.1, aa =ya=0.0), and Gy, (Cases 3 and 6: ya =0.1,

Table 5
Example 4: FEM results for SIFs for an inclined center crack in a circular disk considering radial gradation and oa = fla = ya:
EY, =0.1; EY, = 1.0; G}, = 0.5; v, = 0.03 for orthotropic case, and £ = 1.0;v = 0.3 for isotropic case (see Fig. 18)

Pa Isotropic Orthotropic

M-integral MCC M-integral MCC

K Kn K; Kn K Kn Ky Kn
—-0.50 2291 15.19 22.54 14.76 29.72 18.89 29.22 18.56
-0.25 17.53 13.21 17.37 12.92 23.37 15.38 23.16 15.21
0.00 11.47 9.730 11.45 9.596 16.75 11.38 16.73 11.33
0.25 5.862 5.651 5.898 5.602 10.51 7.302 10.57 7.318

0.50 2.205 2.417 2.236 2412 5.380 3.813 5.459 3.847
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3991

Fig. 19. Example 4: crack opening profile considering radial gradation, EY, =0.1; Ej =1.0; G, =0.5 v;; =0.03, and

oa = fla =ya=0.5.

Table 6

Example 4: FEM results for SIFs for an inclined center crack in a circular disk considering radial gradation and E9, = 0.1 or 1.0;

E, =1.0; G)% =05

; viz = 0.03 (see Fig. 18)

Case EY Nonhomogeneity parameters ~ M-integral MCC
KI Ku Kl KII

1 0.1 oa = 0.1, fa=ya=0.0 15.46 10.46 15.45 10.42
2 0.1 pa =0.1, aza = ya = 0.0 17.09 11.54 17.08 11.50
3 0.1 ya=0.1, 0a = Pa=0.0 16.75 11.38 16.73 11.33
4 1.0 oa=0.1, fa =ya=0.0 10.68 8.907 10.67 8.775
5 1.0 pa=0.1, ca =ya = 0.0 11.85 9.904 11.86 9.766
6 1.0 ya=0.1, aa = fa = 0.0 9.641 9.079 9.633 8.943

40

30

Radial gradation
X 1 gradation
X2 gradation

0.25

Fig. 20. Example 4: effect of gradation direction on SIFs for an orthotropic and exponentially graded disk. The following cases are
considered: Ey; = E%e”, Ey; = E%\e*M, and E|; = E e”®!. Analogous expressions are also adopted for E», and Gis.

oa = fa = 0.0). There is very good agreement between the M-integral and the MCC. Fig. 20 shows the
effect of gradation direction (radial versus Cartesian) on SIFs for the orthotropic FGM case considering
proportional material gradation (oa = fa = ya). As the fa increases, mixed-mode SIFs decrease in a
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monotonic fashion. The SIFs evaluated for the radial gradation are similar to those evaluated for the
Cartesian gradation of Xj, but differs from those for the Cartesian gradation of X;.

5.5. Plate with a curved crack

Muskhelishvili (1953) used conformal mapping and provided the exact solutions for SIFs of a curved
crack in a homogeneous medium under far-field traction, according to the scheme shown in Fig. 21. The
exact solutions for SIFs are given by

VrR sin 0 0 0 30
KI:%[F(H)COSE—I—SinwaiHSE—l—COS (260—7>],

(50)

gV rRsin 0 .0 .20 0 . 30
Ku = — [F(H) smz — sin 2w sin 3 cosz — sin <2w — 7)} ,
where
_ in? 2
F(O) = 1 — cos2wsin(0/2) cos (0/2)’

1 +sin*(0/2)

in which w indicates the angle of the direction of applied traction ¢ with respect to the horizontal line, and
K7 and Kjp are the SIFs at the top crack tip (tip 4). The mode I SIF at the bottom crack tip (tip B) is the
same as K in Eq. (50), however, the mode II SIF changes sign. Our numerical solution (M-integral) will be
tested against these theoretical (reference) solutions.

Fig. 22(a) and (b) show a circular-shaped crack located in a finite two-dimensional plate under remote
uniform tension loading for two different boundary conditions. These boundary conditions are prescribed
such that, for the first set of BCs (Fig. 22(a)), u; = u, = 0 for the node in the middle of the left edge, and
uy = 0 for the node in the middle of the right edge; while for the second set of BCs (Fig. 22(b)), uy = u; =0
for the node in the middle of the bottom edge, and u; = 0 for the node in the middle of the top edge. Fig.
22(c) shows the complete finite element mesh configuration, and Fig. 22(d) shows a mesh detail using 12
sectors (S12) and five rings (R5) around the crack tips. The applied load corresponds to
on(X1,£L) = 0 = £1.0 for the BC in Fig. 22(a) and oy, (£W,X;) = +6 = £1.0 for the BC in Fig. 22(b).
The mesh discretization consists of 1691 QS8, 184 T6, and 24 T6qp elements, with a total of 1875 elements
and 5608 nodes. The following data were used in the FEM analyses:

o

o

Fig. 21. Example 5: a curved crack (circular) under far-field traction.
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c=1.0
N I "
X, E22(X]) X, En(X,) T
E,(X) E, (XD
<+ R=1.0 < R:1.9
[ N x, G| =60 X, —~c=1.0
~ Y
2W=24 2W=24
h | ——
oo .
c=1.0
(a) (b)
[T T
[
(c) (d)

Fig. 22. Example 5: plate with a circular-shaped crack: (a) geometry and BCs (first set of BCs); (b) geometry and BCs (second set of
BCs); (c) complete finite element mesh; (d) mesh detail with 12 sectors (S12) and 5 rings (R5) around the crack tip — the thick line

indicates the crack faces.

plane stress, 2 x 2 Gauss quadrature,

R=10, L/W =10,

Isotropic case (homogeneous):
E=10, v=0.3,
Orthotropic case:

En(X) = E) e

E22 (X]) = Eg2eﬁX] s

EII(XZ) = E(l)leﬁXZ,Ezz(Xz) = EgzeﬁXZ,

E), =10, E=0.5,

G, =0.25,

G (X)) = Gl,e™,
Glz(Xz) = G(l)zeﬁXZ,
Vip = 03,

dimensionless nonhomogeneity parameter : SR = (0.0,0.1).
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Table 7
Example 5: FEM results for SIFs for a semi-circular crack. Case 1: first set of BCs—Fig. 22(a); Case 2: second set of BCs—Fig. 22(b).
The exact solution for homogeneous isotropic materials was reported by Muskhelishvili (1953)

Crack tip Case  Mate- PR Gradation M-integral MCC Exact
rial direction e Ky £ Ky e K
Top 1 Iso 0.0 - 0.6872 —0.4314 0.6765 —-0.4303 0.6785 —0.4330
Ortho 0.0 - 0.6868 —0.4362 0.6853 —-0.4321 - -
0.1 X 0.8240 —-0.3718 0.8218 —0.3678 - -
X5 0.6602 —0.4498 0.6596 —0.4451 - -
2 Iso 0.0 - 0.4690 1.0890 0.4692 1.0890 0.4643 1.0928
Ortho 0.0 - 0.5059 1.0470 0.5053 1.0412 - -
0.1 Xi 0.5131 1.0489 0.5125 1.0425 - -
X, 0.6160 1.0771 0.6159 1.0734 - -
Bottom 1 Ortho 0.1 Xo 0.6739 0.4351 0.6700 0.4306 - -
2 Ortho 0.1 X5 0.5341 —-1.0692 0.5338 —-1.0628 - -

Fig. 23. Example 5: curved crack surface displacement profile (deformed shape) considering the first set of BCs: (a) isotropic
homogeneous case; (b) orthotropic FGM with gradation along the X, direction.

Table 7 shows FEM results for SIFs for both the top and bottom crack tips obtained by means of the
interaction integral for a semi-circular crack considering the two sets of boundary conditions and the two
choices of gradation directions, i.e. X; and X;. It also compares the present results with the available refe-
rence solutions of Muskhelishvili (1953) for the homogeneous isotropic case. In this latter case, the nu-
merical solutions are obtained as a particular case of the general formulation for nonhomogeneous
orthotropic materials. The calculated SIFs agree well with the reference solutions (Muskhelishvili, 1953).
For material gradation along the direction X, the mode II SIF at the bottom crack tip changes sign because
of symmetry, however, for material gradation along the X, direction, both mode I and mode II SIFs change
in magnitude and sign.

Fig. 23(a) and (b) show curved crack surface displacement profile considering the isotropic homogeneous
case and the orthotropic FGM case with gradation along the X; direction, respectively, for the first set of
BCs (see Fig. 22(a)). Notice that the curved crack geometry naturally creates mode-mixity which is ob-
served around crack-tip elements. Moreover, the symmetry of crack opening profiles exists with respect to
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@)

Fig. 24. Example 5: curved crack surface displacement profile (deformed shape) considering gradation along the X, direction in
orthotropic FGMs: (a) first set of BCs; (b) second set of BCs.

the Cartesian direction X for this case, i.e. the homogeneous case and FGM case with gradation of X;. The
crack faces interpenetrate for the isotropic homogeneous case, while this behavior does not occur for the
orthotropic FGM case. Fig. 24(a) and (b) show curved crack surface displacement profile considering
the orthotropic FGM case with gradation of X, for the first and second set of BCs, respectively. We observe
that the interpenetration of the crack faces is also observed for the orthotropic FGM case with gradation of
X, using the first set of BCs. As expected, the symmetry of crack opening profiles is naturally lost for the
FGM with gradation along X, direction (refer to SIFs in Table 7).

5.6. Strip with an edge crack

Fig. 25(a) shows an edge crack of length “a” in a graded plate, and Fig. 25(b) shows the complete mesh
discretization using 12 sectors (S12) and 4 rings (R4) of elements around the crack tip. Fig. 25(c)—(e)
illustrate the three considered types of hyperbolic-tangent material gradation with respect to the crack tip:
reference configuration, translation to the left, and translation to the right, respectively. The fixed-grip
displacement loading results in a uniform strain & (X;,X2) = ¢ in a corresponding uncracked structure.
The displacement boundary condition is prescribed such that u, = 0 along the lower edge and u; = 0 for the
node at the left hand side.

Young’s moduli and shear modulus are hyperbolic-tangent functions with respect to the global (Xi, X3)
Cartesian coordinates as follows:

E; +E1+1+E1‘1 —E}

En(X) = 5 5 I tanh[a(X; + d)],
Ey +Ef Ey—Ej
En(X)) = “2722 S22 52 Gnh(f(X, + )], (51)
- + - _ ot
Gn(X)) = G —; G + G 3 G tanh[y(X; + d)],

where d is a constant for translation. In this example, the Poisson’s ratio vy, is taken as constant. The mesh
discretization consists of 208 Q8, 37 T6, and 12 T6qp elements, with a total of 257 elements and 1001 nodes.
The following data were used for the FEM analysis:
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! TA=1

< [~ Xl
L
x =2 |
| |
(a) (b)
X, X, X,
E, E,
crack crack
X, - X, o X,
(c) (d) (e

Fig. 25. Example 6: strip with an edge crack in hyperbolic-tangent materials: (a) geometry and BCs; (b) complete finite element mesh
with 12 sectors (S12) and four rings (R4) around the crack tip; (c) reference configuration (d = 0.0); (d) translation of material
gradation to the left (4 = 40.5); (e) translation of material gradation to the right (d = —0.5).

plane stress,2 x 2 Gauss quadrature,
a/W =05, L/W=20, & =0.25,
d=(-0.5100.5), v;; =0.3,
Case 1: Proportional material variation (see Fig. 26)
oa = fla=ya =15.0,
(Eq, Ef;) = (1.00,3.00), (Ey,E5) =(1.252.75), (Gp,G},) = (1.50,2.50),
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3.5

N
3]

Material Properties

15

0.5

Fig. 26. Example 6: proportional variation of material properties (Case

55

4.5¢

Material Properties

0.5

Fig. 27. Example 6: proportional variation of material properties (Case 2).

Case 2: Proportional material va

oa = fa = ya =15.0,
(E;, Efy) = (1.00,5.00),

"
i [a 1
E . FGM
11 \
- E22 [a @] e
G
12 ‘;I
i ‘l‘.
W™
\
-1 -0.5 0 0.5 1
X

FGM

riation (see Fig. 27)

(E5, E5,) = (1.25,2.75),

Case 3: Nonproportional material variation (see Fig. 28)

oa=4.0, fa=2.0,
(Eflv El+1) = (E;z,

ya = 1.0,
E;rz) = (sz’

(Gp, Gf) = (1.50,2.50),

G}) = (1.00,3.00).

—

).

3997

(52)

Table 8 shows the present FEM results for mode I SIF (Kj) for various translation factors of hyperbolic-
tangent material variation considering three particular cases of material variations. For proportional
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3.5

Material Properties

05 i i ;

Fig. 28. Example 6: nonproportional variation of material properties (Case 3).

Table 8

Example 6: FEM results for mode I SIF (K;) for an edge crack with translation of hyperbolic-tangent material variation. Case 1:
proportional material variation (Fig. 26); Case 2: proportional material variation (Fig. 27); Case 3: Nonproportional material variation
(Fig. 28)

d M-integral MCC
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

-0.5 1.158 1.214 1.190 1.153 1.187 1.180
-0.4 1.163 1.215 1.165 1.155 1.190 1.150
-0.3 1.173 1.241 1.129 1.160 1.195 1.109
-0.2 1.189 1.252 1.081 1.173 1.208 1.055
-0.1 1.217 1.287 1.016 1.181 1.216 0.988
0 1.049 1.099 0.935 0.974 0.994 0.910
0.1 0.697 0.714 0.846 0.683 0.686 0.828
0.2 0.614 0.619 0.759 0.612 0.614 0.751
0.3 0.585 0.587 0.684 0.584 0.586 0.682
0.4 0.567 0.568 0.623 0.566 0.567 0.623
0.5 0.554 0.555 0.574 0.554 0.554 0.575

material variations (Cases 1 and 2), the mode I SIF increases with the translation factor d for the range
between —0.5 and —0.1, however, it decreases as d increases further. For nonproportional material varia-
tions (Case 3), such behavior is not observed, and the mode I SIF decreases as the translation factor d
increases. Moreover, the crack tip location shows significant influence on SIFs for all the three cases of
hyperbolic-tangent material variation. For all the three cases investigated, the M-integral results compare
reasonably well with those provided by the MCC method.

6. Conclusions and extensions

This paper presents an accurate scheme for evaluating mixed-mode SIFs by means of the interaction
integral (M-integral) method considering arbitrarily oriented straight and curved cracks in two-dimensional
(2D) elastic orthotropic FGMs. The interaction integral proves to be an accurate and robust scheme in the
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numerical examples where various types of material gradation, such as exponential, radial, and hyperbolic-
tangent, are considered. We observe that material orthotropy, material gradation and the direction of
material gradation (radial, Cartesian Xj, and Cartesian X;) may have a significant influence on SIFs. We
also observe that the crack tip location shows a significant influence on SIFs in hyperbolic-tangent ma-
terials. Moreover, the Poisson’s ratio shows a negligible effect on SIF in a pure mode I problem, however, it
may have a significant influence on SIFs in mixed-mode crack problems.

This work has contributed a method for evaluating SIFs in orthotropic FGMs by means of the inter-
action integral. Potential extensions of the present work involve prediction of crack initiation angles and
crack propagation in brittle orthotropic FGMs. This is currently being pursued by the authors.
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Appendix A. Derivatives of auxiliary strain fields

The auxiliary stress and displacement fields, Egs. (7) and (8), are represented by complex variables. For
the complex variables

Vz = \/cos 0 + p sin 0 = \/(cos 0 + o sin 0) +i(f, sin 0) = /x + iy, (A1)
where 1 = v —1, the two solutions are possible:
Vz=a+ib and \/z = —(a +ib). (A.2)

The correct solutions for /z are obtained such that the signs of displacements are satisfied. Thus for
K > 0 and K3 =0,

B >00<0<+n), <0 (—n<0<0), (A.3)
and for K{** = 0 and Kji** > 0,
uf* >0 (0<0<+n), ™ <0 (—n<0<0). (A4)

This approach extracts the expressions for the stresses and displacements involving real variables, which are
originally expressed with the complex variables. The auxiliary stress fieclds are transformed to the global
coordinates given by

%, (r, 0) = cos® wa' | (r, 0) + sin® was, (r, 0) — sin(2m)a',(r, 0),

%, (r, 0) = sin’> wa', (r, 0) + cos’ was,(r, 0) + sin(2w)a',(r, 0), (A.5)
%, (r, 0) = (cos* w — sin® w)a',(r, 0) + sin w cos w(a, (r, 0) — o', (r,0)),
where (-)® and (-)" denote the global and local coordinates, respectively, and o denotes the angle of the local

coordinates with respect to the global coordinates, as shown in Fig. 2. The auxiliary strain fields, with
respect to the global coordinates, are given by

€ (r,0) = Sy (X) 2, (r, 0). (A.6)
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Thus the derivatives of the auxiliary strain fields can be evaluated as follows (k = 1, 2):

oct.  0&8& or 0c% 00
e O 04 Or 05 Q0 N
%k = 3x, ~ or X, | 00 ox,’ (A7)

where

or or Ox; Or Ox,

L _ A A.

an axl an 6x2 an ( 8)
and

00 00 Ox; 00 Ox,

G_Xk o a)C] an a.XZ an7 (A9)
with

or or 00 —sin0 00  cos0

— = — =i — = — = . Al

Ox; cos 6, 0x, sin, Ox; ro 0 ox r (A.10)
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